

- 2 -

HOW TO INVESTIGATE THE INFLUENCE OF TEMPERATURE WITH A MFI-TYPE DEVICE?

A. CALCUATIONS

1) WLF equation

The empirical relationship of Williams-Landel-Ferry (or WLF law) was described for the first time in 1955, in their article entitled "<u>The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids</u>". It helps to know the evolution of the viscosity of polymers according to the temperature.

Nevertheless, this law is only valid for temperatures near the glass transition temperature T_g (i.e. in the interval [T_g ; T_g + 50°C]).

The WFL is:

$$\ln \mu = \ln \mu_0 - \frac{C_1(T - T_0)}{C_2 + T - T_0}$$

The constants C_1 (without unit) and C_2 (°C) depend on the polymer and T_0 , a suitably selected reference temperature. For many polymers, orders of magnitude of C_1 and C_2 are respectively 15 and 50 °C.

When C_1 and C_2 are unknown, it is necessary to measure the viscosity at different temperatures and plot the curve:

$$\frac{1}{\ln\left(\frac{\mu}{\mu_0}\right)} = f\left(\frac{1}{T - T_0}\right)$$

If the resulting curve is a straight line of equation y = ax + b, so:

$$-C_1 = 1 / b;$$

- C₂ = a / b.

If the resulting curve is not a straight line, the WLF law does not adequately describe the variation of the viscosity as a function of temperature. The Arrhenius law is then used.

2) Arrhenius law

It is conventional to use an Arrhenius law for describing the variation of the viscosity with the temperature above T_g + 100 ° C. The equation governing this variation is as follows:

$$\mu=\mu_0\;e^{\frac{E_a}{R}\left(\frac{1}{T}-\frac{1}{T_0}\right)}$$

Where E_a is the activation energy of viscous flow, varies from one polymer to another (for PE, the value can vary from 10 to 90kJ/mol depending on the type of PE, molar mass and branching¹), R is the gas constant (= 8.3145 J.mol⁻¹.K⁻¹) and μ_0 is the viscosity at the reference temperature TO.

In this case, the activation energy is unknown. To know it, simply plot the curve In μ = f(1/T), the slope K is equal to E_a/R.

B. METHOD

The method used is identical to that used in the first article.

Temperatures studied were 150°C, 170°C, 190°C, 210°C and 230°C.

C. RESULTS

The curves of the natural logarithm of the true viscosity as a function of the natural logarithm of the shear rate as a function of temperature are shown in the graph below (*Figure 1*).

Le traitement complet des paramètres rhéologiques tel qu'effectué au cours du <u>premier article</u> est résumé dans le *Tableau 1*.

Figure 1: $\ln \mu = f (\ln \gamma)$ curve at different temperature.

Temperature (°C)	Newtonian viscosity μ _N (Pa.s)	Critical shear rate γ _{cr} (s ⁻¹)	Rheological equation (above de γ _{cr})							
150°C	11000	0,86	μ = 10605.γ ^{-0,37}							
170°C	7015	1,49	$\mu = 8824.\gamma^{-0,39}$ $\mu = 8310.\gamma^{-0,45}$							
190°C	5700	2,23	μ = 8310.γ ^{-0,45}							
210°C	4400	2,34	$\mu = 5673.\gamma^{-0,37}$ $\mu = 4212.\gamma^{-0,33}$							
230°C	3750	2,39	μ = 4212.γ ^{-0,33}							
Tableau 1: Rheological data at different temperatures.										

First, the WLF law is applied. Nevertheless, we see (*Figure 2*) that the resulting curve is not a straight line. This method of treatment is therefore not suitable to determine the change in viscosity as a function of

temperature in this case. Since the material used is polyethylene ($T_g \approx 100$ ° C) and that one is outside of the range of temperature [T_g ; T_g + 50 ° C], this result makes sense.

Figure 2: Determination of the WLF equation constants.

ERIAU//ING

Subsequently, a mathematical treatment Arrhenius law-type was used. The curves obtained for different stresses are straight (*Figure 5*). All have the same slope.

So $E_a = 27.5 \pm 0.8 \text{ kJ/mol}$. This value is in agreement with values found in the literature for LDPE²⁻⁵.

Stress (MPa)	3,0	7,0	9,5	13,9	17,4	20,4	23,9	30,8	37,3	39,9	43,8	46,4				
Slope	3007	3227	3206	3264	3226	3391	3301	3435	3371	3452	3382	3362	3302	±	97	Ī

D. CONCLUSION

In the second part on the study of the rheological behavior of thermoplastics with a <u>MFI</u>, we measured the effect of temperature on viscosity. Different models were used: WLF and Arrhenius. The latter gave satisfactory results and a value of activation energy was calculated. This value can be used to optimize the processing temperature:

- Hence by increasing the temperature to increase fluidity and thus, reduce cycle/dwell time (and being careful not to degrade the material);

- Hence by lowering the temperature to reduce the carbon footprint of its production.

In the third and final article, we will discuss the phenomena of swelling at the die exit.

Suggested bibliographic reference

[1] C.VASILE, M. PASCU; Practical Guide to Polyethylene, Rapra Technologies Limited (2005).

[2] James A. KENT, Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology: Vol. 1 (2007).

[3] Xiaohua QIU, M. D. EDIGER, *Branching Effects on the Segmental Dynamics of Polyethylene Melts*, Journal of Polymer Science: Part B: Polymer Physics 38 (2000) 2634–2643.

[4] Junting XU, Xurong XU, Qiang ZHENG, Linxian FENG, Wai CHEN, *Dynamic rheological behavior of metallocene-based ethylene-butene copolymers and their blends with low density polyethylene*, Eur. Polym. J.I 38 (2002) 365-375.

[5] Claudio J. PEREZ, Guillermo A. CASSANO, Enrique M. VALLES, Marcelo D. FAILLA, Lidia M. QUINZANI, *Rheological study of linear high density polyethylenes modified with organic peroxide*, Polymer 43 (2002), 2711-2720.